
Fast Stereoscopic Images with Ray-Traced Volume Rendering

Stephen J. Adelson* Charles D. Hansen†

Los Alamos National Laboratory

* MS M986, Los Alamos, NM 87545 (adelson@lanl.gov)
† MS B287, Los Alamos, NM 87545 (hansen@acl.lanl.gov)

ABSTRACT

One of the drawbacks of standard volume rendering techniques is
that it is often difficult to comprehend the three-dimensional
structure of the volume from a single frame; this is especially true
in cases where there is no solid surface. Generally, several frames
must be generated and viewed sequentially, using motion parallax
to relay depth. Another option is to generate a single stereoscopic
pair, resulting in clear and unambiguous depth information in both
static and moving images.

Methods have been developed which take advantage of the
coherence between the two halves of a stereo pair for polygon
rendering and ray-tracing, generating the second half of the pair in
significantly less time than that required to completely render a
single image. This paper reports the results of implementing these
techniques with parallel ray-traced volume rendering. In tests
with different data types, the time savings is in the range of
70 - 80%.

1. INTRODUCTION

Ray-tracing is a common method for generating realistic images
of complex surfaces. A similar technique, sometimes referred to
as ray-casting, is also frequently used with volumetric data. Rays
are cast through the volume from each pixel, accumulating color
and opacity as they travel, and returning an overall color for that
position. Like all volume rendering techniques, however, a single
image can be difficult to interpret because of image artifacts
which hinder structure determination. The problem is even more
complicated when there is no solid surface and color is used to
represent some characteristic of the data rather than a lighting
function. Real-world depth cues such as luminosity, perspective,
shading, and occlusion are, at best, difficult to use in many
volumetric images, particularly those with no isosurface [2].

The general solution to this problem is to generate multiple
images of the same data from displaced view points and view
them sequentially. Using motion parallax in this way is an
effective depth cue, but it has two major shortcomings. First,
multiple images of complex data involve significant allocation of
both time and computing resources. Second, depth information is
only available while the image is in motion. Ideally, a volume
could be paused in its movement and examined. If the
progression of views is halted, the motion depth cue is lost.

Another solution to the same problem is to generate a single
stereoscopic pair. Stereoscopy gives unambiguous depth
information when it is the only available depth cue, and depth
discrimination is enhanced when other cues are also included [3,
7, 11, 17, 18, 19, 21, 24]. Only two images need to be rendered,
the two halves of the stereo pair, and no motion is necessary;
static images can be examined with no loss of perceived structure.
In this paper, it is shown that both halves of a stereoscopic pair of

ray-traced volumetric images need not be fully rendered.
Exploiting the coherence between the two views, the second half
of the stereo pair can be generated in a fraction of the time of the
first half.

2. BACKGROUND AND PREVIOUS WORK

2.1 Stereoscopic Reprojection
Most volume renderers use parallel projections for generating
images. In this section, stereoscopic projection is derived for
parallel projections, although it is a fairly straightforward matter
to derive for perspective projection [1, 10].

The most efficient viewing geometry for parallel stereoscopic
imaging is illustrated below in Figure 1. There are two view
points, separated by a distance e: the left center of projection
(LCoP) for the left-eye image and the right center of projection
(RCoP) for the right-eye image. Instead of placing the centers of
projection symmetrically about the origin (as they would be in
traditional rendering geometries), one is positioned at the origin
and the other at the point (e cos(Φ/2), 0, e sin(Φ/2)). This is
accomplished by changing the viewing transformation matrix so
that the center of the viewing coordinate axes is at (e/2 cos(Φ/2),

0, e/2 sin(Φ/2)) and the w-axis of the (u, v, w) viewing coordinate

system is (-sin(Φ/2), 0, cos(Φ/2)). This makes the center of

rotation P = (0, 0, R), where R = e/[2 sin(Φ/2)]. No additional
calculations are necessary to view-transform data when this
change is made in the viewing transformation matrix.

+x axis

+z axis

RCoP

LCoP

Φ/2

P

Φ/2
Φ/2

Viewing Vectors

e

D

Figure 1: Displaced Parallel Projection Geometry.
Rotating and translating the centers of projection - as
opposed to the standard symmetrical placement about the
Z axis - results in computational savings during projection.

The left-eye projection is simply a parallel projection based on the
data position after the viewing transformation. The right-eye
projection involves a rotation of -Φ/2 about the y axis, a
translation of (-e, 0, 0) to place the RCoP at the origin, and a
second rotation of -Φ/2 about the y axis to place P back on the z

axis. Using c and s as abbreviations for cos(Φ/2) and sin(Φ/2)
respectively, the projection matrix for the right-eye view is:

 c 0 s 0 1 0 0 -e c 0 s 0 c2-s2 0 2cs -(ce)
 0 1 0 0 0 1 0 0 0 1 0 0 = 0 1 0 0
-s 0 c 0 0 0 1 0 -s 0 c 0 -2cs 0 c2-s2 (se)
 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
rot -Φ/2 trans -e rot -Φ/2 projection matrix

So the view-transformed point (xp, yp, zp) projects to (xsl, ysl)
and (xsr, ysr), where

xsl = xp (1)

xsr = xp[c2 - s2] + zp[2cs] - e c

= xp cos(Φ) + zp sin(Φ) − e cos(Φ/2) (2)

ysl, sr = yp (3)

Since e cos(Φ/2) is a constant term, both projections can be
calculated using two additions and two multiplications.

2.1.2 Limitations on Viewing Angle or Volume Scale in
Parallel Projections
In parallel projected stereoscopic images, horizontal parallax
(xsr - xsl, the distance between projections) is unbounded.
Horizontal parallax should certainly be limited to the interoccular
distance so that one need not become walleyed in order to view
the images. Furthermore, while experienced viewers can fuse the
interoccular parallax [9], most casual viewers can tolerate much
less [8]. To keep horizontal parallax in a reasonable range, the z
values of the data and values of the rendering constants e and Φ
must be kept within a specific range.

Let emin and e max be the near (negative parallax) and far
(positive parallax) limits of horizontal parallax. These can be
described as a function of the physical distance from the viewer to
the screen, D, expressed in screen units:

emin = -K1 D (4)
emax = K2 D (5)

K1 and K2 are positive constants which are generally 0.028 or less
[8]. Given that a separation of emin should occur at the closest z
point of the data and emax at the farthest, a range for z can be
derived [1]:

(1 - K1/[2 sin(Φ/2)]) ≤ z ≤ D (1 + K2/[2 sin(Φ/2)]) (6)

If D is fixed at some comfortable viewing distance, the range of z
may be matched to the data by manipulating the viewing angle Φ.
Alternately, the data may be rescaled to accommodate any desired
viewing angle. The value of e can be found by recognizing that
the distance to point P, at which there is no parallax, is equal to
the distance to the screen, D, so as can be seen in Figure 1:

e = 2D tan(Φ/2) (7)

2.1. Parallel Shears
Since Φ is usually small, it has been suggested that the

substitutions sin(Φ) = Φ and cos(Φ) = 1 could be used with little
loss of accuracy [13]. Even at 6.5 degrees, more than four times
the larger recommendations for e, the error is less than 0.65%.
Using these simplifications reduces the x coordinate calculations
as follows:

xsl = xp (8)

xsr = xp + zp Φ − e (9)

Both pairs of coordinates can be found in two additions and one
multiplication using displaced parallel projection. The same
considerations about unbounded parallax exist for shears as they
do for rotations.

2.2 Ray-Traced Volume Rendering
In ray-traced volume rendering, such as that described by Levoy
[12], rays are traced through the volume, accumulating values and
opacities at intervals (regular or irregular) until an opacity limit is
reached (often 1.0) or the ray exits the volume. The colors and
opacities are found by trilinear interpolation from the eight nearest
voxels.

Ray samples are accumulated by the use of Porter and Duff's over
operation [16]:

S(i) over S(j) = S(i) + (1 - α(i)) S(j) (10)

where S(i) is a color / opacity pair [C(i), α(i)] representing a
portion of the ray closer to the viewpoint than the second pair S(j).

Note that when rays are sampled in regularly spaced intervals,
projection from the left-eye to the right becomes even simpler.
Looking at equation (9), the projection value on a ray will increase
at each interval by ∆z Φ (or ∆z sin(Φ), if rotations are used
instead of shears), which is a predetermined constant.
Furthermore, if the left-eye rays are processed sequentially along
scan-lines, the initial right-eye projection from two consecutive
left-eye rays will differ by the constant ∆x (or ∆x cos(Φ)). On
average, then, the projection value can be found with a single
addition operation.

2.2.1 Parallel Volume Rendering
Parallel architectures are sometimes used for volume rendering
because of their speed and the memory for rendering huge data
sets which is not available on traditional architectures. Ma, et al.
described an algorithm for parallel volume rendering using a data
distributed model on the Thinking Machines CM-5 [15, 20]. In
their implementation, the volume is divided among a power of
two number of nodes, using a k-D tree structure with binary
subdivision along successive world axes. Each subvolume is
transformed to correspond to the viewing specifications and given
a bounding box orthogonal to the world axes, through which rays
are cast.

Rays accumulate values at regular intervals, which are dependent
on volume size and not image size. While load-balancing
problems remain to be addressed, the method has good
characteristics for accelerated rendering. The algorithm presented
here uses a slightly modified version of Ma, et al.'s code as a
front-end for the stereoscopic technique. The displaced parallel

projection with shears, as described in section 2.1.3, is used. It
should be noted, however, that the stereoscopic algorithm does not
require a parallel renderer, and would work just as well on a serial
computer.

2.3 Guaranteeing Correct Stereoscopic Views
If rays are allowed to traverse completely through the volume, the
samples computed for the left eye are projected to the right-eye
viewpoint, resulting in a correct stereoscopic view. However, a
common method for accelerating the volume rendering process is
early ray termination. When the accumulated ray opacity reaches
1.0, the remaining samples encountered by the ray contribute
nothing to the final color.1 Thus, it is possible to terminate the
ray traversal at this point without any loss of information. Yet if
the left-eye ray is terminated early, samples are ignored which
might contribute to one or more right-eye rays. It is necessary to
handle this case properly if a correct stereoscopic view is to be
obtained.

6 45 23 1
Left-eye Rays

r4r3r2r1
Right-eye Rays

Projection Plane

Right-eye ray

Left-eye ray

Solid Objects

Figure 2: The round object terminates ray 3 and projects to
ray r1 in the right eye. The oval object in ray 4 would
project to ray r2, but that projection will not be allowed
since an object (like the square) may exist past the
termination point in ray 3. No right-eye projection is
allowed farther to the right of the final projection of any
left-eye ray already evaluated.

Figure 2 shows parallel rays from the two view points with the
rotational angle greatly exaggerated for clarity. From this figure it
can be seen that if rays in the left-eye view are evaluated right to
left along scan-lines and front to back along the ray, the right-eye
rays will accumulate values in a front to back order as well. As
the left-eye rays accumulate values, the right-eye projection of the
current sample is calculated, and if the appropriate right-eye ray
has not reached full opacity, the sample is accumulated into that
ray as well.

1If isosurfaces exist in the volume rendering, the opacity reaches
1.0 when a surface is encountered. Early ray termination can be
thought of as the existence of occluding objects at the voxel where
the opacity reaches 1.0.

Suppose, as in Figure 2, that a left-eye ray (ray 3) accumulates full
opacity and terminates at the round solid object. Nothing is
known about the data which may lie beyond this termination
point. It is possible that samples which accumulate to a left-eye
ray processed after the terminated ray (rays 4 - 6) would project
into a right-eye ray whose view may be obscured by the unknown
area (rays r2 - r4). To avoid this, the maximum allowable right-
eye projection will be the final right-eye projection of any left-eye
ray already evaluated. In this example, as ray 4 is processed, no
right-eye projection will be allowed to the right of ray r1, since
there may be unknown material beyond the termination of ray 3
which was never accumulated into the right-eye rays.

When all left-eye rays have been calculated, the right-eye rays are
re-examined. Any right-eye ray which has not accumulated full
opacity and whose last projection is not on the far side of the
volume bounding box, indicates some left eye ray was terminated
early. In order to generate the correct stereoscopic view, it is
necessary to continue the ray traversal from the last projection into
the ray. This algorithm assures that right-eye rays accumulate
only those samples from the left-eye view which are guaranteed to
be visible and that the right-eye view evaluates voxels only when
and where it must.

It is likely that projections from the left-eye view to the right-eye
view will result in the accumulation of samples from locations
which would not be sampled had the right-eye view been
completely rendered. Indeed, every time a sample is projected
between views, it is being accumulated to the nearest right-eye
ray. It should be remembered, however, that the angle between
the two views is small (often less than two degrees), and, hence,
the “error” is also quite small. It appears to be extraordinarily
difficult, if not impossible, to visually notice the difference
between a completely rendered image and one produced by this
rendering technique.

3. PERFORMANCE TESTS AND DISCUSSION

A modified version of Ma, et al.'s parallel volume renderer was
created which would project voxel values using the displaced
parallel projection. Three sets of volumetric data were used to test
the renderer: a CT scan of a human head (1283 - Figure 3), a
Magnetic Resonance Angiography (MRA) data set showing the
vascular structure in the brain of a patient (256 X 256 X 128 -
Figure 4), and a 2563 CFD data set computed on the CM-200
showing the onset of turbulence (Figure 5). Each set was
evaluated at three different rendering resolutions (single image
sizes of 64 X 64, 128 X 128, and 256 X 256) and five different
node configurations (32, 64, 128, 256, and 512 nodes).

Tables 1, 2, and 3 below display the savings of the algorithm in
three ways. First, the actual time savings, comparing the time to
generate a full right-eye image with the fast stereoscopic
algorithm time to generate the second image. This savings will be
measured on a scale of 0 to 100%. The second measure is the
percentage of left-eye voxels retained in the right eye view. The
measure counts only those voxels which actually accumulate into
right-eye rays; voxels which project to a terminated ray are
ignored. The final measure is the ratio of the number of voxels

evaluated solely for the right-eye to those evaluated for the left-
eye (projected to the right eye or not).2

Table 1: Head Data Results - Percentages

Nodes
Size 32 64 128 256 512

642

time savings 74.4 75.2 73.0 74.3 73.7
voxels retained 96.1 96.9 97.5 97.5 97.7

from left view
voxels evaluated 5.1 4.3 4.0 4.0 4.3

(right/left)
1282

time savings 78.4 78.6 78.0 78.4 79.5
voxels retained 98.0 98.4 98.7 98.7 98.9

from left view
voxels evaluated 2.6 2.1 1.8 1.8 1.8

(right/left)
2562

time savings 80.6 80.4 79.8 80.5 81.2
voxels retained 98.9 99.2 99.3 99.3 99.4

from left view
voxels evaluated 1.3 1.1 0.9 0.9 0.8

(right/left)

Table 2: Vessel Data Results - Percentages

Nodes
Size 32 64 128 256 512

642

time savings 77.4 76.7 77.1 79.1 81.0
voxels retained 98.2 98.2 98.7 98.9 98.9

from left view
voxels evaluated 2.8 2.8 2.2 2.5 2.1

(right/left)
1282

time savings 79.8 79.7 78.7 79.8 80.2
voxels retained 98.9 98.9 99.4 99.6 99.6

from left view
voxels evaluated 1.7 1.7 1.1 1.0 1.0

(right/left)
2562

time savings 79.9 80.5 80.2 80.1 79.9
voxels retained 99.4 99.4 99.7 99.8 99.8

from left view
voxels evaluated 0.9 0.9 0.6 0.4 0.4

(right/left)

Given that the extremely short rendering times challenged the
accuracy of the timing mechanism, the differences in time savings
for a particular data set are insignificant for a fixed image size but
with different node configurations. The savings does increase
with image resolution. As image size grows, the parallax between
projected points remains the same (as it is based on viewer
distance, not image size), even though the horizontal size of the
image has increased. In effect, this is equivalent to keeping the
image size constant and decreasing the projection distances. Since

2 The timing results and voxel counts used to calculate these
percentages can be found in the Los Alamos technical report, LA-
UR-94-1250.

areas of terminated rays tend to appear in clusters, a smaller
effective projection distance means that it is less likely that a
sample from the left eye will project into a terminated ray-cluster
in the right eye. More left-eye samples will then be retained in the
right-eye view, and as a result, fewer samples will need to be
evaluated solely for the right-eye rays. (Both phenomenon are
seen in the results as image size increases.) Since the projection
of left-eye samples to the right eye is a much faster operation than
evaluating voxels for the right-eye, the time savings also increases
with image size.

Table 3: Vorticity Data Results - Percentages

Nodes
Size 32 64 128 256 512

642

time savings 77.1 78.5 77.8 80.7 81.0
voxels retained 99.1 99.4 99.3 99.3 99.1

from left view
voxels evaluated 1.2 1.1 1.3 1.3 1.9

(right/left)
1282

time savings 80.0 80.4 79.8 80.1 80.4
voxels retained 99.4 99.7 99.8 99.8 99.8

from left view
voxels evaluated 0.8 0.5 0.5 0.5 0.6

(right/left)
2562

time savings 80.7 80.8 80.6 80.7 80.9
voxels retained 99.6 99.8 99.9 99.9 99.9

from left view
voxels evaluated 0.6 0.3 0.2 0.2 0.2

(right/left)

The ratio of voxels retained, those samples evaluated for the left-
eye view that were reused in the right-eye view, is high in all
cases, better than 96%. This value will be larger if the voxels are
less opaque, as this will result in fewer terminated rays in the
right-eye view. The head data, which contained an isosurface, had
the smallest retained voxels percentage since the rays terminated
when they reached the surface. In contrast, the vessel data had at
least 98.2% retention, and the vorticity data, at least 99.3%. It has
already been explained that this percentage will rise with image
size; it will also (generally) rise with node configuration size.
When the number of nodes increases, the area of the volume
which a given node is rendering will decrease. A smaller volume
area lowers the probability that a ray passing through the area will
terminate, so that the retained voxels percentage increases.
However, there is a possibility that poor partitioning of the data
will result in several dense blocks, slightly lowering the overall
savings. This is seen in the 64 X 64 vorticity data, in going from
64 to 128 nodes (Table 3).

The evaluated voxel ratio of the right to left-eye is quite small. In
the case of the head data with many terminated rays, the right-eye
had to calculate 5% of the voxels evaluated in the left-eye. In the
other data sets there are fewer terminated rays, and
correspondingly fewer voxels evaluated in the right-eye, to as
little as 0.2%. Figure 6 visually illustrates the limited number of
samples evaluated only for the right-eye.

The evaluated voxel ratio increases inversely with image size, as
explained above. A larger number of nodes will also cause the
ratio to fall. As fewer rays terminate, fewer voxels will be

evaluated only for the right-eye; there are more samples being
reused from the left-eye view. Likewise, dense blocks which
cause the retained voxel percentage to fall will increase the
evaluated voxel percentage, as seen in Table 3.

Notice that the total percentage of voxels seen in the right-eye
view (voxel retained percentage + voxel ratio percentage) is
greater than 100% of the left-eye voxels. This is primarily due to
the volume bounding box, which is calculated for the left-eye. As
seen in Figure 2, the left-eye rays traverse this box orthogonally,
while the right-eye rays pass through at an angle, which is a
longer traversal. Additionally, if the volume being rendered is
longer in the z dimension (after the viewing transformation) than
it is in the x dimension, there will be a greater number of right-eye
rays passing through the volume than left-eye rays. The total
number of voxels used in the right-eye view is usually about 1%
greater than those in the left-eye view, and this percentage will
drop as the viewing angle decreases and with cubically-shaped
volumes.

3.1 Stereo Pair Generation and Other Volume Rendering
Techniques
It is possible to use stereo pair coherence with other volume
rendering techniques. For example, the dividing cubes method [6]
produces point samples of non-transparent data which are then
projected to the screen. These samples can be projected to the
right eye using stereoscopic techniques developed for non-
volumetric ray-tracing [5], and likely achieve similar time savings
of 80-90% . Some methods, like marching cubes [14], produce a
polygonal isosurface which is then rendered using traditional
polygon scan-conversion methods. Polygons can be clipped,
back-face culled, and projected simultaneously using coherence
techniques [4]. If Gouraud or Phong shading is desired, the
interior of the polygons must be shaded separately, since projected
polygons will have the differing widths (although identical
heights). Tests with relatively large polygons (an average polygon
covering 50 pixels) produced a time savings of 36%. This savings
is significantly smaller than the ray-traced volume rendering, and
most of the loss occurs in the interior polygon color calculation.
Since polygons extracted from a surface tend to be very small, the
interior of polygons will be small, and a much larger savings is
expected.

Other methods for projecting voxels directly, such as splatting
[22], can use the coherence to quickly find the pixels in the right-
eye view affected by the voxel. Savings should be similar to that
reported in this paper.

4. CONCLUSIONS AND FUTURE WORK

Stereoscopic images are a viable option for giving unambiguous
depth information to volumetric rendering. Such images display
the structure of the data without the need of continuous
movement, which is usually employed in scientific visualization.
A technique has been demonstrated which will generate
stereoscopic pairs of volumetric data, creating the second half of
the pair in a fraction of the time of generating the first half. In this
implementation, the second half of the pair was generated 74 -
81% faster than full rendering, with the same quality of image.
The technique is more efficient with less opaque data, with data
rendered at a higher resolution, and rendering with a larger
number of processors.

The technique need not be used with a parallel render. A serial
render could also use this stereoscopic algorithm, much in the
same way that each node of the CM-5 individually uses the

algorithm on a small portion of the volume. Also, volumetric ray-
tracing modifications such as adaptive screen sampling, adaptive
ray sampling, ray templates, and space-leaping (described in [23])
could be implemented without affecting the reprojection
technique. Using these methods may affect the time savings
somewhat, since all of the left-eye voxels would be affected while
only the right-eye voxels evaluated solely for that view would
benefit from the faster method. This needs to be tested, but a
significant retention of savings is expected.

Since the actual number of voxels rendered in the right-eye is
much lower than the time savings suggests, it is likely that the
time savings would be greater with optimized code. Also, when
using multiple processors, a load balancing solution may increase
savings, and should at the very least eliminate the minor drops in
savings that were seen in Table 6, caused by poor load balancing.

5. ACKNOWLEDGMENTS

The authors would like to acknowledge the use of computing
resources located at the Advanced Computing Laboratory (ACL)
of Los Alamos National Laboratory, Los Alamos, NM 87545.
This work was performed under the auspices of the United States
Department of Energy.

6. REFERENCES

1. Adelson, Stephen, Stereoscopic Projections: Parallel
Viewing Vectors, Rotations, and Shears. Los Alamos
National Laboratory Technical Report LA-UR-94-0115, Los
Alamos, NM, Jan., 1994.

2. Adelson, Stephen, Using stereoscopic imaging in
visualization applications. In SPIE Proceedings 2178: Visual
Data Exploration and Analysis (San Jose, California,
February, 1994), 88-99.

3. Adelson, Stephen, Allen, Jeanette, Badre, Albert, Hodges,
Larry and Lawrence, Andrea, Performance Comparison of
Multiple Image Depth and Shape Cues. International
Journal of Human-Computer Interaction 5, 4 (November
1993), 347-360.

4. Adelson, Stephen, Bentley, Jeffrey, Chong, In, Hodges, Larry
and Winograd, Joseph, Simultaneous Generation of
Stereoscopic Views. Computer Graphics Forum 10, 1
(March 1991), 3-10.

5. Adelson, Stephen and Hodges, Larry, Stereoscopic Ray-
Tracing. The Visual Computer 10, 3 (December 1993), 127-
144.

6. Cline, Harvey, Lorensen, William, Ludke S., Crawford, C.R.
and, Teeter BC, Two Algorithms for the Three-Dimensional
Reconstruction of Tomograms. Medical Physics 15, 3 (May
/ June 1988), 320-327.

7. Hsu, J., Babbs, C.F., Chelberg, D.M., Pizlo, Z. and Delp,
E.J., A study of the effectiveness of stereo imaging truth or
dare: Is stereo viewing really better? In SPIE Proceedings
2177a: Stereoscopic Displays and Applications V, (San Jose,
California, February, 1994), 211-222.

8. Hodges, Larry, Time-Multiplexed Stereoscopic Computer
Graphics. IEEE Computer Graphics and Applications 12, 2
(March 1992), 20-30.

9. Hodges, Larry, Unpublished research results relayed in
personal conversation.

10. Hodges, Larry and McAllister, David, Computing
Stereoscopic Views. In Stereo Computer Graphics and
Other True 3D Technologies, ed. David McAllister,
Princeton University Press, Princeton, 1993, 71-89.

11. Hodges, Larry and McWhorter, Shane, Stereoscopic Display
for Design Visualization. Image Communication 4, 1
(November 1991), 3-13.

12. Levoy, Marc, Display of Surfaces from Volume Data. IEEE
Computer Graphics and Applications 8, 3 (May 1988), 29-
37.

13. Lipscomb, James, Three-Dimensional Cues for a Molecular
Computer Graphics System. Ph.D. dissertation, Department
of Computer Science, University of North Carolina, Chapel
Hill, NC, 1979.

14. Lorensen, William and Cline, Harvey. Marching Cubes: A
High Resolution 3D Surface Construction Algorithm.
Proceedings of SIGGRAPH ‘87 (Anahiem, California, July
27-31, 1987). In Computer Graphics 21, 4 (July 1987), 163-
169.

15. Ma, Kwan-Liu, Painter, James, Hansen, Charles and Krogh,
Michael, “A Data Distributed, Parallel Algorithm for Ray-
Traced Volume Rendering,” Proceedings of the 1993
Symposium on Parallel Rendering (San Jose, California,
October 25-26, 1993), special issue of Computer Graphics,
ACM SIGGRAPH, New York, 1993.

16. Porter, Thomas and Duff, Tom Compositing Digital Images.
Proceedings of SIGGRAPH ‘84 (Minneapolis, Minnesota,

July 23-27, 1984). In Computer Graphics 18, 3 (July 1984),
253-259.

17. Reinhart, William, Depth Cueing for Visual Search and
Cursor Positioning. In SPIE Proceedings 1457: Stereoscopic
Displays and Applications II, (San Jose, California, February,
1991), 221-232.

18. Reinhart, William, Beaton, Robert and Snyder, Harry,
Comparison of Depth Cues for Relative Depth Judgments. In
SPIE Proceedings 1256: Stereoscopic Displays and
Applications, (San Jose, California, February, 1990), 12-21.

19. Sollenberger, R.L. and Milgram, P., "A Comparative Study
of Rotational and Stereoscopic Computer Graphics Depth
Cues." Proceedings of the Human Factors Society 35th
Annual Meeting, (October 1991), 1452-1456.

20. Thinking Machines, The Connection Machine CM-5
Technical Summary (1991).

21. Ware, Colin, Arthur, Kevin and Booth, Kellogg, Fish Tank
Virtual Reality. In INTERCHI '93, (April, 1993), 37-42.

22. Westover, Lee, Footprint Evaluation for Volume Rendering.
Proceedings of SIGGRAPH ‘90 (Dallas, Texas, August 6-10,
1990). In Computer Graphics 24, 4 (August 1990), 367-376.

23. Yagel, Roni, Volume Viewing: State of the Art Survey. In
ACM SIGGRAPH ‘93 Course Notes #41: Volume
Visualization, August, 1993, pp. 102-129.

24. Yeh, Yei-Yu and Silverstein, Louis, Visual Performance
with Monoscopic and Stereoscopic Presentation of Identical
Three-Dimensional Visual Tasks. In 1990 SID International
Symposium Digest of Technical Papers (Las Vegas, Nevada,
May, 1990), 359-362.

Figure 3: Stereo pair of the head data. The right eye image was generated using the fast stereo imaging technique.

Figure 4: Stereo pair of the blood vessel data. The right eye image was generated using the fast stereo imaging technique

Figure 5: Stereo pair of the vorticity data. The right eye image was generated using the fast stereo imaging technique.

Figure 6: Right-eye view of the vorticity data, with samples evaluated only for the right-eye illuminated.

	ABSTRACT
	1. INTRODUCTION
	2. BACKGROUND AND PREVIOUS WORK
	2.1 Stereoscopic Reprojection
	2.1.1 Limitations on Viewing Angle or Volume Scale in Parallel Projections
	2.1.2 Parallel Shears

	2.2 Ray-Traced Volume Rendering
	2.2.1 Parallel Volume Rendering

	2.3 Guaranteeing Correct Stereoscopic Views

	3. PERFORMANCE TESTS AND DISCUSSION
	3.1 Stereo Pair Generation and Other Volume Rendering Techniques

	4. CONCLUSIONS AND FUTURE WORK
	5. ACKNOWLEDGMENTS
	6. REFERENCES

